3.151 \(\int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^{3/2} \sqrt {c+d \tan (e+f x)}} \, dx\)

Optimal. Leaf size=251 \[ -\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) \sqrt {a+b \tan (e+f x)}}-\frac {(i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{f (a-i b)^{3/2} \sqrt {c-i d}}-\frac {(B-i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{f (a+i b)^{3/2} \sqrt {c+i d}} \]

[Out]

-(I*A+B-I*C)*arctanh((c-I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a-I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))/(a-I*b)^(3/2)/
f/(c-I*d)^(1/2)-(B-I*(A-C))*arctanh((c+I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a+I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))
/(a+I*b)^(3/2)/f/(c+I*d)^(1/2)-2*(A*b^2-a*(B*b-C*a))*(c+d*tan(f*x+e))^(1/2)/(a^2+b^2)/(-a*d+b*c)/f/(a+b*tan(f*
x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.97, antiderivative size = 251, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.102, Rules used = {3649, 3616, 3615, 93, 208} \[ -\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) \sqrt {a+b \tan (e+f x)}}-\frac {(i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{f (a-i b)^{3/2} \sqrt {c-i d}}-\frac {(B-i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{f (a+i b)^{3/2} \sqrt {c+i d}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2)/((a + b*Tan[e + f*x])^(3/2)*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

-(((I*A + B - I*C)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]])])
/((a - I*b)^(3/2)*Sqrt[c - I*d]*f)) - ((B - I*(A - C))*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[
a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/((a + I*b)^(3/2)*Sqrt[c + I*d]*f) - (2*(A*b^2 - a*(b*B - a*C))*Sqrt[c + d
*Tan[e + f*x]])/((a^2 + b^2)*(b*c - a*d)*f*Sqrt[a + b*Tan[e + f*x]])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3615

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[((a + b*x)^m*(c + d*x)^n)/(A - B*x), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3616

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^{3/2} \sqrt {c+d \tan (e+f x)}} \, dx &=-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt {a+b \tan (e+f x)}}-\frac {2 \int \frac {-\frac {1}{2} (b B+a (A-C)) (b c-a d)+\frac {1}{2} (A b-a B-b C) (b c-a d) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx}{\left (a^2+b^2\right ) (b c-a d)}\\ &=-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt {a+b \tan (e+f x)}}+\frac {(A-i B-C) \int \frac {1+i \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx}{2 (a-i b)}+\frac {(A+i B-C) \int \frac {1-i \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx}{2 (a+i b)}\\ &=-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt {a+b \tan (e+f x)}}+\frac {(A-i B-C) \operatorname {Subst}\left (\int \frac {1}{(1-i x) \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (a-i b) f}+\frac {(A+i B-C) \operatorname {Subst}\left (\int \frac {1}{(1+i x) \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (a+i b) f}\\ &=-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt {a+b \tan (e+f x)}}+\frac {(A-i B-C) \operatorname {Subst}\left (\int \frac {1}{i a+b-(i c+d) x^2} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{(a-i b) f}+\frac {(A+i B-C) \operatorname {Subst}\left (\int \frac {1}{-i a+b-(-i c+d) x^2} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{(a+i b) f}\\ &=-\frac {(i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a-i b)^{3/2} \sqrt {c-i d} f}-\frac {(B-i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^{3/2} \sqrt {c+i d} f}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt {a+b \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.58, size = 264, normalized size = 1.05 \[ \frac {\frac {2 \left (a (a C-b B)+A b^2\right ) \sqrt {c+d \tan (e+f x)}}{(a d-b c) \sqrt {a+b \tan (e+f x)}}+\frac {(a+i b) (i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {-c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {-a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {-a+i b} \sqrt {-c+i d}}+\frac {(b+i a) (A+i B-C) \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {a+i b} \sqrt {c+i d}}}{f \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2)/((a + b*Tan[e + f*x])^(3/2)*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

(((a + I*b)*(I*A + B - I*C)*ArcTanh[(Sqrt[-c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[-a + I*b]*Sqrt[c + d*Tan[e
 + f*x]])])/(Sqrt[-a + I*b]*Sqrt[-c + I*d]) + ((I*a + b)*(A + I*B - C)*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e
 + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a + I*b]*Sqrt[c + I*d]) + (2*(A*b^2 + a*(-(b*B) + a
*C))*Sqrt[c + d*Tan[e + f*x]])/((-(b*c) + a*d)*Sqrt[a + b*Tan[e + f*x]]))/((a^2 + b^2)*f)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [F(-1)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {A +B \tan \left (f x +e \right )+C \left (\tan ^{2}\left (f x +e \right )\right )}{\sqrt {c +d \tan \left (f x +e \right )}\, \left (a +b \tan \left (f x +e \right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)

[Out]

int((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \tan \left (f x + e\right )^{2} + B \tan \left (f x + e\right ) + A}{{\left (b \tan \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \sqrt {d \tan \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)/((b*tan(f*x + e) + a)^(3/2)*sqrt(d*tan(f*x + e) + c)), x)

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.00 \[ \text {Hanged} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*tan(e + f*x) + C*tan(e + f*x)^2)/((a + b*tan(e + f*x))^(3/2)*(c + d*tan(e + f*x))^(1/2)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \tan {\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}}{\left (a + b \tan {\left (e + f x \right )}\right )^{\frac {3}{2}} \sqrt {c + d \tan {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(c+d*tan(f*x+e))**(1/2)/(a+b*tan(f*x+e))**(3/2),x)

[Out]

Integral((A + B*tan(e + f*x) + C*tan(e + f*x)**2)/((a + b*tan(e + f*x))**(3/2)*sqrt(c + d*tan(e + f*x))), x)

________________________________________________________________________________________